

Copyright © ComponentSpace Pty Ltd 2004-2025. All rights reserved.
www.componentspace.com

ComponentSpace

SAML for ASP.NET

Configuration Guide

ComponentSpace SAML for ASP.NET Configuration Guide

i

Contents
Introduction ... 1

SAML Configuration Options .. 1

SAML Configuration XML .. 1

Identity Provider Example Configuration .. 1

Service Provider Example Configuration ... 2

XML Schema .. 2

Enabling Visual Studio Intellisense ... 3

Programmatically Specifying Configuration ... 5

Identity Provider Example Configuration .. 5

Service Provider Example Configuration ... 6

Updating Configuration .. 6

Implementing ISAMLConfigurationResolver .. 7

Identity Provider Example Configuration .. 7

Service Provider Example Configuration ... 8

Configuration Name Resolution .. 9

Regular Expression Configuration Name Resolution ... 9

Multi-Tenancy Support ... 10

Configuration Selection .. 10

Identifying the Tenant.. 11

SAMLConfigurations ... 11

SAMLConfiguration ... 11

LocalIdentityProviderConfiguration .. 12

LocalServiceProviderConfiguration ... 12

PartnerIdentityProviderConfiguration ... 13

PartnerServiceProviderConfiguration ... 16

LocalProviderConfiguration ... 17

PartnerProviderConfiguration .. 18

ProviderConfiguration ... 23

CertificateConfiguration ... 24

URL ... 26

Creating SAML Configuration ... 26

Creating Local Identity Provider Configuration .. 27

Creating Local Service Provider Configuration ... 27

SAML Metadata ... 28

ComponentSpace SAML for ASP.NET Configuration Guide

ii

ComponentSpace SAML for ASP.NET Configuration Guide

1

Introduction
The ComponentSpace SAML for ASP.NET is a .NET framework class library that provides SAML
v2.0 assertions, protocol messages, bindings and profiles functionality.

The primary SAML APIs, defined by the ISAMLIdentityProvider and ISAMLServiceProvider
interfaces, make use of SAML configuration for various settings such as SAML provider names,
X.509 certificates, URLs and various flags affecting processing. For more information about
these APIs, refer to the SAML for ASP.NET Developer Guide.

SAML configuration may be specified either as XML or programmatically.

SAML Configuration Options
There are a number of options for specifying SAML configuration.

1. XML in a saml.config file
2. Programmatically through the SAML configuration API
3. Programmatically by implementing ISAMLConfigurationResolver

Using an XML configuration file is the simplest approach and requires no additional coding.

If SAML configuration information is stored in a database, it must be set programmatically.

If the SAML configuration changes infrequently, it may be set using the SAML configuration API,
typically at application start-up.

If the SAML configuration changes frequently, it's better to implement the
ISAMLConfigurationResolver interface for the on-demand retrieval of SAML configuration
information.

SAML Configuration XML
SAML configuration may be specified as XML in an XML file (e.g. saml.config).

If not otherwise specified, the SAML configuration is expected to be in a saml.config file in the
application’s root folder.

A different file may be specified through the SAMLConfigFile app setting in web.config.

<add key="SAMLConfigFile" value="c:\config\saml.config"/>

Identity Provider Example Configuration
The following is an example of setting the identity provider configuration through XML.

<SAMLConfiguration xmlns="urn:componentspace:SAML:2.0:configuration">
 <IdentityProvider
 Name="https://ExampleIdentityProvider"
 Description="Example Identity Provider">
 <LocalCertificates>
 <Certificate FileName="Certificates\idp.pfx" Password="password"/>
 </LocalCertificates>
 </IdentityProvider>

ComponentSpace SAML for ASP.NET Configuration Guide

2

 <PartnerServiceProviders>
 <!-- Web forms example -->
 <PartnerServiceProvider
 Name="https://ExampleServiceProvider"
 Description="Example Service Provider"

AssertionConsumerServiceUrl="https://localhost:44338/SAML/AssertionConsumerService.a
spx"
 SingleLogoutServiceUrl="https://localhost:44338/SAML/SLOService.aspx">
 <PartnerCertificates>
 <Certificate FileName="Certificates\sp.cer"/>
 </PartnerCertificates>
 </PartnerServiceProvider>
 </PartnerServiceProviders>
</SAMLConfiguration>

Service Provider Example Configuration
The following is an example of setting the service provider configuration through XML.

<SAMLConfiguration xmlns="urn:componentspace:SAML:2.0:configuration">
 <ServiceProvider
 Name="https://ExampleServiceProvider"
 Description="Example Service Provider"
 AssertionConsumerServiceUrl="~/SAML/AssertionConsumerService.aspx">
 <LocalCertificates>
 <Certificate FileName="Certificates\sp.pfx" Password="password"/>
 </LocalCertificates>
 </ServiceProvider>

 <PartnerIdentityProviders>
 <!-- Web forms example -->
 <PartnerIdentityProvider
 Name="https://ExampleIdentityProvider"
 Description="Example Identity Provider"
 SingleSignOnServiceUrl="https://localhost:44390/SAML/SSOService.aspx"
 SingleLogoutServiceUrl="https://localhost:44390/SAML/SLOService.aspx">
 <PartnerCertificates>
 <Certificate FileName="Certificates\idp.cer"/>
 </PartnerCertificates>
 </PartnerIdentityProvider>
 </PartnerIdentityProviders>
</SAMLConfiguration>

XML Schema
An XML schema file, saml-config-schema-v<version-number>.xsd, is included in the
documentation folder (eg. saml-config-schema-v1.0.xsd).

ComponentSpace SAML for ASP.NET Configuration Guide

3

The corresponding file is also available under https://www.componentspace.com/schemas
(e.g. https://www.componentspace.com/schemas/saml-config-schema-v1.0.xsd).

This may be used to enable Visual Studio Intellisense when editing SAML configuration XML or
when using an XML schema validator.

Enabling Visual Studio Intellisense
In Visual Studio, open a saml.config file in the XML editor. This should be the default editor for
this file type.

In the properties window, edit the Schemas property.

Click the Add button and select the XML schema file.

ComponentSpace SAML for ASP.NET Configuration Guide

4

Intellisense now should be enabled.

ComponentSpace SAML for ASP.NET Configuration Guide

5

Programmatically Specifying Configuration
In many scenarios, storing the SAML configuration as XML is the simplest and preferred
approach.

However, there may be instances where this isn’t the case. For example, the configuration may
be stored in a custom database. Once retrieved, it would be set using the SAML configuration
API.

In the application’s start-up class, the SAML configuration is specified.

SAMLController.Configuration = samlConfiguration;

Identity Provider Example Configuration
The following is an example of setting the identity provider configuration programmatically.

Typically, rather than setting hard-coded values, these would be read from a custom database.

SAMLConfiguration samlConfiguration = new SAMLConfiguration()
{
 LocalIdentityProviderConfiguration = new LocalIdentityProviderConfiguration()
 {
 Name = "http://ExampleIdentityProvider",
 LocalCertificates = new List<CertificateConfiguration>()
 {
 new CertificateConfiguration()
 {
 FileName = @"certificates\idp.pfx",
 Password = "password"
 }
 }
 }
};

samlConfiguration.AddPartnerServiceProvider(
 new PartnerServiceProviderConfiguration()
 {
 Name = "http://ExampleServiceProvider",
 AssertionConsumerServiceUrl =
"http://localhost:51901/SAML/AssertionConsumerService.aspx",
 SingleLogoutServiceUrl = "http://localhost:51901/SAML/SLOService.aspx",
 PartnerCertificates = new List<CertificateConfiguration>()
 {
 new CertificateConfiguration()
 {
 FileName = @"certificates\sp.cer"
 }
 }
 });

SAMLController.Configuration = samlConfiguration;

ComponentSpace SAML for ASP.NET Configuration Guide

6

Service Provider Example Configuration
The following is an example of setting the service provider configuration programmatically.

Typically, rather than setting hard-coded values, these would be read from a custom database.

SAMLConfiguration samlConfiguration = new SAMLConfiguration()
{
 LocalServiceProviderConfiguration = new LocalServiceProviderConfiguration()
 {
 Name = "http://ExampleServiceProvider",
 AssertionConsumerServiceUrl = "~/SAML/AssertionConsumerService.aspx",
 LocalCertificates = new List<CertificateConfiguration>()
 {
 new CertificateConfiguration()
 {
 FileName = @"certificates\sp.pfx",
 Password = "password"
 }
 }
 }
};

samlConfiguration.AddPartnerIdentityProvider(
 new PartnerIdentityProviderConfiguration()
 {
 Name = "http://ExampleIdentityProvider",
 SingleSignOnServiceUrl = "http://localhost:51801/SAML/SSOService.aspx",
 SingleLogoutServiceUrl = "http://localhost:51801/SAML/SLOService.aspx",
 PartnerCertificates = new List<CertificateConfiguration>()
 {
 new CertificateConfiguration()
 {
 FileName = @"certificates\idp.cer",
 }
 }
 });

SAMLController.Configuration = samlConfiguration;

Updating Configuration
The following is an example of accessing and updating the SAML configuration.

SAMLController.Configuration.AddPartnerIdentityProvider(
 new PartnerIdentityProviderConfiguration()
 {
 Name = "http://ExampleIdentityProvider2",
 SingleSignOnServiceUrl = "http://localhost:51802/SAML/SSOService.aspx",
 SingleLogoutServiceUrl = "http://localhost:51802/SAML/SLOService.aspx",

ComponentSpace SAML for ASP.NET Configuration Guide

7

 PartnerCertificates = new List<CertificateConfiguration>()
 {
 new CertificateConfiguration()
 {
 FileName = @"certificates\idp.2cer",
 }
 }
 });

Implementing ISAMLConfigurationResolver
The ISAMLConfigurationResolver interface provides an alternative mechanism for specifying
SAML configuration. Rather than calling the SAML configuration API to specify configuration, the
ISAMLConfigurationResolver interface is implemented to return SAML configuration as
requested. This approach might be preferred to support very dynamic SAML configurations.

As a convenience, when not all interface methods are to be implemented, the
AbstractSAMLConfigurationResolver class may be extended.

In the application’s start-up class, the configuration resolver is registered.

SAMLController.ConfigurationResolver = new CustomConfigurationResolver();

Identity Provider Example Configuration
The following is an example of implementing ISAMLConfigurationResolver as the identity
provider.

Typically, rather than setting hard-coded values, these would be read from a custom database.

using ComponentSpace.SAML2.Configuration.Resolver;

public class ExampleIdentityProviderConfigurationResolver :
AbstractSAMLConfigurationResolver
{
 public override LocalIdentityProviderConfiguration
GetLocalIdentityProviderConfiguration(string configurationName)
 {
 return new LocalIdentityProviderConfiguration()
 {
 Name = "http://ExampleIdentityProvider",
 LocalCertificates = new List<CertificateConfiguration>()
 {
 new CertificateConfiguration()
 {
 FileName = @"certificates\idp.pfx",
 Password = "password"
 }
 }
 };

ComponentSpace SAML for ASP.NET Configuration Guide

8

 }

 public override PartnerServiceProviderConfiguration
GetPartnerServiceProviderConfiguration(string configurationName, string partnerName)
 {
 return new PartnerServiceProviderConfiguration()
 {
 Name = "http://ExampleServiceProvider",
 AssertionConsumerServiceUrl =
"http://localhost:51901/SAML/AssertionConsumerService.aspx",
 SingleLogoutServiceUrl = "http://localhost:51901/SAML/SLOService.aspx",
 PartnerCertificates = new List<CertificateConfiguration>()
 {
 new CertificateConfiguration()
 {
 FileName = @"certificates\sp.cer"
 }
 }
 };
 }
}

Service Provider Example Configuration
The following is an example of implementing ISAMLConfigurationResolver as the service
provider.

Typically, rather than setting hard-coded values, these would be read from a custom database.

using ComponentSpace.SAML2.Configuration.Resolver;

public class ExampleServiceProviderConfigurationResolver :
AbstractSAMLConfigurationResolver
{
 public override LocalServiceProviderConfiguration
GetLocalServiceProviderConfiguration(string configurationName)
 {
 return new LocalServiceProviderConfiguration()
 {
 Name = "http://ExampleServiceProvider",
 AssertionConsumerServiceUrl = "~/SAML/AssertionConsumerService.aspx",
 LocalCertificates = new List<CertificateConfiguration>()
 {
 new CertificateConfiguration()
 {
 FileName = @"certificates\sp.pfx",
 Password = "password"
 }
 }
 };

ComponentSpace SAML for ASP.NET Configuration Guide

9

 }

 public override PartnerIdentityProviderConfiguration
GetPartnerIdentityProviderConfiguration(string configurationName, string partnerName)
 {
 return new PartnerIdentityProviderConfiguration()
 {
 Name = "http://ExampleIdentityProvider",
 SingleSignOnServiceUrl = "http://localhost:51801/SAML/SSOService.aspx",
 SingleLogoutServiceUrl = "http://localhost:51801/SAML/SLOService.aspx",
 PartnerCertificates = new List<CertificateConfiguration>()
 {
 new CertificateConfiguration()
 {
 FileName = @"certificates\idp.cer",
 }
 }
 };
 }
}

Configuration Name Resolution
The ISAMLConfigurationNameResolver interface maps SAML message issuer names to partner
configuration names.

A default implementation performs a one-to-one mapping which is appropriate for most use
cases.

A configuration name resolver is registered in the application’s start-up class.

SAMLController.ConfigurationNameResolver = new CustomConfigurationNameResolver();

Regular Expression Configuration Name Resolution
An implementation that supports regular expressions is available.

SAMLController.ConfigurationNameResolver = new
RegexSAMLConfigurationNameResolver();

Using the regular expression configuration name resolver, the following example SAML partner
identity provider configuration matches any tenant in an Entra ID multi-tenant configuration.

The Name "https://sts.windows.net/" is used as a regular expression pattern and will match
SAML message issuer names such as "https://sts.windows.net/f2f933ec-d7c9-433f-8926-
d3a0732a7dcf/".

<PartnerIdentityProvider
 Name="https://sts.windows.net/"

ComponentSpace SAML for ASP.NET Configuration Guide

10

 SingleSignOnServiceUrl="https://login.microsoftonline.com/common/saml2"
 SingleLogoutServiceUrl="https://login.microsoftonline.com/common/saml2">
 <PartnerCertificates>
 <Certificate Use="Signature" FileName="Certificates\azure-common-1.cer" />
 <Certificate Use="Signature" FileName="Certificates\azure-common-2.cer" />
 <Certificate Use="Signature" FileName="Certificates\azure-common-3.cer" />
 <Certificate Use="Signature" FileName="Certificates\azure-common-4.cer" />
 </PartnerCertificates>
</PartnerIdentityProvider>

Multi-Tenancy Support
Multi-tenancy support refers to a single application accommodating multiple customers or
tenants each of whom has their own separate SAML configuration.

For the majority of use cases, a single SAML configuration will suffice and multi-tenancy
support is not required.

As with a single SAML configuration, multiple SAML configurations may be specified through
XML, programmatically or via the ISAMLConfigurationResolver interface.

The following is an example outline of multiple SAML configurations.

<SAMLConfigurations xmlns="urn:componentspace:SAML:2.0:configuration">
 <SAMLConfiguration Name="tenant1">
 <ServiceProvider Name="SP1"/>
 <PartnerIdentityProviders>
 <PartnerIdentityProvider Name="IdP1"/>
 <PartnerIdentityProvider Name="IdP2"/>
 </PartnerIdentityProviders>
 </SAMLConfiguration>

 <SAMLConfiguration Name="tenant2">
 <ServiceProvider Name="SP2"/>
 <PartnerIdentityProviders>
 <PartnerIdentityProvider Name="IdP3"/>
 <PartnerIdentityProvider Name="IdP4"/>
 </PartnerIdentityProviders>
 </SAMLConfiguration>
</SAMLConfigurations>

The Name property uniquely identifies each of the SAML configurations.

Configuration Selection
Prior to processing SSO and SLO requests, a SAML configuration must be selected. This is done
by setting the SAMLController.ConfigurationName property. Refer to the SAML for ASP.NET
Developer Guide for more information.

The following example specifies the SAML configuration to use when processing the SAML
response.

ComponentSpace SAML for ASP.NET Configuration Guide

11

// Identify the tenant (application specific, details not shown).
var tenantName = GetTenantName();

// Specify the SAML configuration.
SAMLController.ConfigurationName = tenantName;

// Receive and process the SAML assertion contained in the SAML response.
SAMLServiceProvider.ReceiveSSO(…);

Identifying the Tenant
The application is responsible for identifying the tenant and therefore the ID to specify when
calling SAMLController.ConfigurationName.

Possible methods include:

• Separate subdomain names for each tenant
• Query string parameter
• Special HTTP headers or cookies
• IP address ranges

SAMLConfigurations
The SAMLConfigurations class is the top-level class specifying the SAML configurations.

Configurations [required]

The Configurations is a list of one or more SamlConfiguration items. Each SamlConfiguration
item corresponds to a tenant in a multi-tenancy application. In the more common single
tenancy application, a single SamlConfiguration is defined.

ReloadOnConfigurationChange [optional]

The flag indicates whether the application should be reloaded if the configuration changes.

If the saml.config file changes, the application is reloaded to pick-up the new configuration.

The default is true.

ValidateMessagesAgainstSchema [optional]

The flag indicates whether SAML messages should be validated against the XML schema.

Validating SAML messages against the XML schema is good practice but does result in a small
performance hit.

The default is false.

SAMLConfiguration
The SAMLConfiguration class specifies a single SAML configuration for a local identity provider
or service provider.

Name [optional]

ComponentSpace SAML for ASP.NET Configuration Guide

12

Each SAMLConfiguration is identified by a unique name. This name is internal to the
configuration and is not exposed to partner providers.

A name is only required if there are multiple SAML configurations.

LocalIdentityProviderConfiguration [optional]

The LocalIdentityProviderConfiguration specifies the local identity provider’s configuration.

LocalServiceProviderConfiguration [optional]

The LocalServiceProviderConfiguration specifies the local service provider’s configuration.

PartnerIdentityProviderConfigurations [optional]

The PartnerIdentityProviderConfigurations is the list of one or more
PartnerIdentityProviderConfiguration items. Each PartnerIdentityProviderConfiguration
specifies the configuration to participate in SSO with a partner identity provider.

PartnerServiceProviderConfigurations [optional]

The PartnerServiceProviderConfigurations is the list of one or more
PartnerServiceProviderConfiguration items. Each PartnerServiceProviderConfiguration
specifies the configuration to participate in SSO with a partner service provider.

LocalIdentityProviderConfiguration
The LocalIdentityProviderConfiguration specifies the configuration for the local identity
provider.

Its base class is LocalProviderConfiguration.

SingleSignOnServiceUrl [optional]

The single sign-on service URL is the location of the local identity provider’s SSO service where
SAML authn requests are received as part of SP-initiated SSO.

If specified, it may be used to perform certain security checks as part of the SAML protocol.

Its use is optional but recommended.

LocalServiceProviderConfiguration
The LocalServiceProviderConfiguration specifies the configuration for the local service
provider.

Its base class is LocalProviderConfiguration.

AssertionConsumerServiceUrl [optional]

The assertion consumer service URL is the location of the local service provider’s ACS where
SAML responses are received as part of SSO.

If specified, it may be used to perform certain security checks as part of the SAML protocol.

Its use is optional but recommended.

ComponentSpace SAML for ASP.NET Configuration Guide

13

PartnerIdentityProviderConfiguration
The PartnerIdentityProviderConfiguration specifies the configuration for a partner identity
provider.

Its base class is PartnerProviderConfiguration.

SingleSignOnServiceUrl [optional]

The single sign-on service URL is the location of the partner identity provider’s SSO service
where SAML authn requests are sent as part of SP-initiated SSO. If only IdP-initated SSO is
supported, this URL may be omitted.

SingleSignOnServiceBinding [optional]

The single sign-on service binding specifies the transport mechanism (i.e. SAML binding) to use
when sending SAML authn requests to the partner identity provider.

The binding options are:

• urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect
• urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

The default is urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect.

SignAuthnRequest [optional]

The flag specifies whether SAML authn requests sent to the partner identity provider should be
signed. Signing authn requests is recommended but optional.

The default is true.

ForceAuthn [optional]

The flag specifies whether the force authentication attribute in SAML authn requests sent to the
partner identity provider should be set.

The default is false.

WantAssertionOrResponseSigned [optional]

The flag specifies whether either SAML responses or assertions received from the partner
identity provider should be signed. If the flag is set and neither the SAML response nor SAML
assertion is signed or the signature cannot be verified, this is considered an error.

Signing ensures the identity of the sender and the integrity of the content. Signatures will be
generated by the partner provider with its private key and verified by the local provider with the
partner provider’s public key.

Generally, it doesn’t matter whether the SAML response or assertion is signed. The payload of
the SAML response is the SAML assertion so signing the SAML response includes the SAML
assertion.

It’s recommended that WantAssertionOrResponseSigned is set to true.

The default is true.

WantSAMLResponseSigned [optional]

ComponentSpace SAML for ASP.NET Configuration Guide

14

The flag specifies whether SAML responses received from the partner identity provider should
be signed. If the flag is set and either the SAML response isn’t signed or the signature cannot be
verified, this is considered an error.

Signing ensures the identity of the sender and the integrity of the content. Signatures will be
generated by the partner provider with its private key and verified by the local provider with the
partner provider’s public key.

It’s recommended that WantAssertionOrResponseSigned, WantSAMLResponseSigned or
WantAssertionSigned is set to true.

The default is false.

WantAssertionSigned [optional]

The flag specifies whether SAML assertions received from the partner identity provider should
be signed. If the flag is set and either the SAML assertion isn’t signed or the signature cannot be
verified, this is considered an error.

Signing ensures the identity of the sender and the integrity of the content. Signatures will be
generated by the partner provider with its private key and verified by the local provider with the
partner provider’s public key.

It’s recommended that WantAssertionOrResponseSigned, WantSAMLResponseSigned or
WantAssertionSigned is set to true.

The default is false.

WantAssertionEncrypted [optional]

The flag specifies whether SAML assertions received from the partner identity provider should
be encrypted. If the flag is set and either the SAML assertion isn’t encrypted or cannot be
decrypted, this is considered an error.

Encrypting ensures the privacy of the content. Assertions will be encrypted by the partner
provider with the local provider’s public key and decrypted by the local provider with its private
key.

If the SAML assertion includes sensitive information, it’s recommended that it’s encrypted. This
SAML assertion encryption is in addition to the privacy provided at the transport layer when
using the recommended HTTPS protocol. In many scenarios, encryption of the assertion is not
required.

The default is false.

ProviderName [optional]

The provider name is included in the SAML authn requests sent to the partner identity provider.

AuthnContextComparison [optional]

The comparison method is included in the SAML authn requests sent to the partner identity
provider.

The comparison method is used to evaluate the requested contexts.

ComponentSpace SAML for ASP.NET Configuration Guide

15

The comparison methods are:

• exact
• minimum
• maximum
• better

The default is to not include a comparison which is equivalent to specifying exact.

DisableIdPInitiatedSso [optional]

The flag specifies whether IdP-initiated SSO is supported.

Both IdP-initiated and SP-initiated SSO are supported.

Setting the flag to true disables IdP-initiated SSO.

The default is false.

DisableAssertionReplayCheck [optional]

The flag specifies whether checks for SAML assertion replay attacks are disabled.

Each SAML assertion includes a unique ID. A cache of received SAML assertion IDs is
maintained and if an ID matches a previously received ID this is considered an error.

Setting the flag to true disables this check.

The default is false.

DisableRecipientCheck [optional]

A SAML assertion may include a subject confirmation recipient URI. This identifies the intended
recipient of the SAML assertion. If included it should match the service provider’s assertion
consumer service URL specified by the AssertionConsumerServiceUrl configuration property.

Setting the flag to true disables this check.

The default is false.

DisableTimePeriodCheck [optional]

A SAML assertion may include attributes identifying a time period in which the SAML assertion
is valid. If included the time at which the SAML assertion is received should be within this time
period.

Setting the flag to true disables this check.

The default is false.

DisableAudienceRestrictionCheck [optional]

A SAML assertion may include an audience restriction URI. This identifies the intended recipient
of the SAML assertion. If included it should match the service provider’s name.

Setting the flag to true disables this check.

The default is false.

ComponentSpace SAML for ASP.NET Configuration Guide

16

DisableAuthnContextCheck [optional]

A SAML assertion may include an authentication context. This identifies the mechanism by
which the user was authenticated at the identity provider. For example, if the user was
authenticated by password, the authentication context would be
“urn:oasis:names:tc:SAML:2.0:ac:classes:Password”. If included it should match the
authentication context class specified by the optional ExpectedAuthnContext configuration
property.

Setting the flag to true disables this check.

The default is false.

PartnerServiceProviderConfiguration
The PartnerServiceProviderConfiguration specifies the configuration for a partner service
provider.

Its base class is PartnerProviderConfiguration.

AssertionConsumerServiceUrl [optional]

The assertion consumer service URL is the location of the partner service provider’s ACS where
SAML responses are sent as part of SSO.

WantAuthnRequestSigned [optional]

The flag specifies whether SAML authn requests received from the partner service provider
should be signed. Receiving signed authn requests is recommended but optional.

The default is true.

SignSAMLResponse [optional]

The flag specifies whether SAML responses sent to the partner service provider should be
signed.

Signing ensures the identity of the sender and the integrity of the content. Signatures will be
generated by the local provider with its private key and verified by the partner provider with the
local provider’s public key.

It’s recommended that either SignSAMLResponse or SignAssertion is set to true.

The default is false.

SignAssertion [optional]

The flag specifies whether SAML assertions sent to the partner service provider should be
signed.

Signing ensures the identity of the sender and the integrity of the content. Signatures will be
generated by the local provider with its private key and verified by the partner provider with the
local provider’s public key.

It’s recommended that either SignSAMLResponse or SignAssertion is set to true.

The default is true.

ComponentSpace SAML for ASP.NET Configuration Guide

17

EncryptAssertion [optional]

The flag specifies whether SAML assertions sent to the partner service provider should be
encrypted.

Encrypting ensures the privacy of the content. Assertions will be encrypted by the local provider
with the partner provider’s public key and decrypted by the partner provider with its private key.

If the SAML assertion includes sensitive information, it’s recommended that it’s encrypted. This
SAML assertion encryption is in addition to the privacy provided at the transport layer when
using the recommended HTTPS protocol. In many scenarios, encryption of the assertion is not
required.

The default is false.

AssertionLifeTime [optional]

The assertion lifetime specifies the time span for which the SAML assertion is valid. It is the
current UTC time plus or minus the assertion lifetime time span.

The time span should be kept short but not so short as to cause issues when server clocks are
not synchronized exactly.

The default is 3 minutes.

RelayState [optional]

The relay state is sent as part of IdP-initiated SSO and specifies the URL the service provider
should redirect to once SSO completes.

LocalProviderConfiguration
The LocalProviderConfiguration is an abstract base class.

Its base class is ProviderConfiguration.

SingleLogoutServiceUrl [optional]

The single logout service URL is the location of the local provider’s SLO service where SAML
logout messages are received. If SLO is not supported, this URL may be omitted.

If specified, it may be used to perform certain security checks as part of the SAML protocol.

Its use is optional but recommended.

ResolveToHttps [optional]

The flag specifies whether local URLs should be resolved to HTTPS.

This is useful when using an SSL terminating device such as a load balancer.

For example, if true, a local URL of http://www.sp.com/SAML/AssertionConsumerService.aspx
would be resolved to https://www.sp.com/SAML/AssertionConsumerService.aspx when
included in the SAML authn request sent to the identity provider.

The default is true.

ComponentSpace SAML for ASP.NET Configuration Guide

18

PartnerProviderConfiguration
The PartnerProviderConfiguration is an abstract base class.

Its base class is ProviderConfiguration.

SingleLogoutServiceUrl [optional]

The single logout service URL is the location of the partner provider’s SLO service where SAML
logout messages are sent. If SLO is not supported, this URL may be omitted.

SingleLogoutServiceResponseUrl [optional]

The single logout service response URL is the location of the partner provider’s SLO service
where SAML logout responses are sent. If SLO is not supported or the same partner provider
endpoint receives logout requests and responses, this URL may be omitted.

SingleLogoutServiceBinding [optional]

The single logout service binding specifies the transport mechanism (i.e. SAML binding) to use
when sending SAML logout messages to the partner provider.

The binding options are:

• urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect
• urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

The default is urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect.

LogoutRequestLifeTime [optional]

The assertion lifetime specifies the time span for which the SAML logout request is valid. It is
the current UTC time plus or minus the logout request lifetime time span.

The time span should be kept short but not so short as to cause issues when server clocks are
not synchronized exactly.

The default is 3 minutes.

SignLogoutRequest [optional]

The flag specifies whether SAML logout requests sent to the partner provider should be signed.

Signing ensures the identity of the sender and the integrity of the content. Signatures will be
generated by the local provider with its private key and verified by the partner provider with the
local provider’s public key.

The default is true.

SignLogoutResponse [optional]

The flag specifies whether SAML logout responses sent to the partner provider should be
signed.

Signing ensures the identity of the sender and the integrity of the content. Signatures will be
generated by the local provider with its private key and verified by the partner provider with the
local provider’s public key.

ComponentSpace SAML for ASP.NET Configuration Guide

19

The default is true.

WantLogoutRequestSigned [optional]

The flag specifies whether SAML logout requests received from the partner provider should be
signed. If the flag is set and either the logout request isn’t signed or the signature cannot be
verified, this is considered an error.

Signing ensures the identity of the sender and the integrity of the content. Signatures will be
generated by the partner provider with its private key and verified by the local provider with the
partner provider’s public key.

The default is true.

WantLogoutResponseSigned [optional]

The flag specifies whether SAML logout responses received from the partner provider should be
signed. If the flag is set and either the logout response isn’t signed or the signature cannot be
verified, this is considered an error.

Signing ensures the identity of the sender and the integrity of the content. Signatures will be
generated by the partner provider with its private key and verified by the local provider with the
partner provider’s public key.

The default is true.

EncryptLogoutNameID [optional]

The flag specifies whether Name IDs in logout requests sent to the partner provider should be
encrypted.

Encrypting ensures the privacy of the content. Name IDs will be encrypted by the local provider
with the partner provider’s public key and decrypted by the partner provider with its private key.

If the Name ID is sensitive, it’s recommended that it’s encrypted. This Name ID encryption is in
addition to the privacy provided at the transport layer when using the recommended HTTPS
protocol. In many scenarios, encryption of the Name ID is not required.

The default is false.

IssuerFormat [optional]

The issuer format specifies the format of the issuer field included in SAML messages.

NameIDFormat [optional]

The name ID format specifies the format of the name identifier. For a local identity provider, the
format is included with the SAML assertion name identifier. For a local service provider, the
format is included with the SAML authentication request name identifier policy.

DigestMethod [optional]

The digest method specifies how to generate the digest for XML signatures.

The supported digest methods are:

• http://www.w3.org/2000/09/xmldsig#sha1

ComponentSpace SAML for ASP.NET Configuration Guide

20

• http://www.w3.org/2001/04/xmlenc#sha256
• http://www.w3.org/2001/04/xmldsig-more#sha384
• http://www.w3.org/2001/04/xmlenc#sha512

The default is http://www.w3.org/2001/04/xmlenc#sha256.

SignatureMethod [optional]

The signature method specifies how to generate XML signatures.

The supported signature methods are:

• http://www.w3.org/2000/09/xmldsig#rsa-sha1
• http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
• http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
• http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

• http://www.w3.org/2007/05/xmldsig-more#sha1-rsa-MGF1
• http://www.w3.org/2007/05/xmldsig-more#sha256-rsa-MGF1
• http://www.w3.org/2007/05/xmldsig-more#sha384-rsa-MGF1
• http://www.w3.org/2007/05/xmldsig-more#sha512-rsa-MGF1

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1
• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384
• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512

The default is http://www.w3.org/2001/04/xmldsig-more#rsa-sha256.

WantDigestMethod [optional]

The digest method specifies the required digest method of received XML signatures.

Refer to DigestMethod for valid values.

If unspecified, any digest method is permitted.

WantSignatureMethod [optional]

The signature method specifies the required signature method of received XML signatures.

Refer to SignatureMethod for valid values.

If unspecified, any signature method is permitted.

KeyEncryptionMethod [optional]

The key encryption method specifies how to encrypt the symmetric key used in XML encryption.

The supported key encryption methods are:

• http://www.w3.org/2001/04/xmlenc#rsa-1_5
• http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

The RSA-OAEP extension adds the following key encryption method:

ComponentSpace SAML for ASP.NET Configuration Guide

21

• http://www.w3.org/2009/xmlenc11#rsa-oaep

Refer to the Developer Guide for information on adding RSA-OAEP support.

The default is http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

KeyEncryptionDigestMethod [optional]

The key encryption digest method is used by the http://www.w3.org/2009/xmlenc11#rsa-oaep
and http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p key encryption algorithms.

The supported key encryption digest methods are:

• http://www.w3.org/2000/09/xmldsig#sha1
• http://www.w3.org/2001/04/xmlenc#sha256
• http://www.w3.org/2001/04/xmldsig-more#sha384
• http://www.w3.org/2001/04/xmlenc#sha512

The default is http://www.w3.org/2000/09/xmldsig#sha1.

KeyEncryptionMaskGenerationFunction [optional]

The key encryption mask generation function is used by the
http://www.w3.org/2009/xmlenc11#rsa-oaep key encryption algorithm.

The supported key encryption mask generation functions are:

• http://www.w3.org/2009/xmlenc11#mgf1sha1
• http://www.w3.org/2009/xmlenc11#mgf1sha256
• http://www.w3.org/2009/xmlenc11#mgf1sha384
• http://www.w3.org/2009/xmlenc11#mgf1sha512

The default is http://www.w3.org/2009/xmlenc11#mgf1sha1.

DataEncryptionMethod [optional]

The data encryption method specifies how to encrypt the data in XML encryption.

The supported data encryption methods are:

• http://www.w3.org/2001/04/xmlenc#tripledes-cbc
• http://www.w3.org/2001/04/xmlenc#aes128-cbc
• http://www.w3.org/2001/04/xmlenc#aes192-cbc
• http://www.w3.org/2001/04/xmlenc#aes256-cbc

The AES-GCM extension adds the following data encryption methods:

• http://www.w3.org/2009/xmlenc11#aes128-gcm
• http://www.w3.org/2009/xmlenc11#aes192-gcm
• http://www.w3.org/2009/xmlenc11#aes256-gcm

Refer to the Developer Guide for information on adding AES-GCM support.

The default is http://www.w3.org/2001/04/xmlenc#aes256-cbc.

ClockSkew [optional]

ComponentSpace SAML for ASP.NET Configuration Guide

22

The clock skew specifies the time span to allow for differences between local and partner
computer clocks when checking time intervals.

The time span should be kept short but not so short as to cause issues when server clocks are
not synchronized exactly.

The default is 3 minutes.

AuthnContext [optional]

The authentication context specifies the mechanism by which the user was authenticated at
the identity provider.

For example, if the user was authenticated by password, the authentication context would be
“urn:oasis:names:tc:SAML:2.0:ac:classes:Password”.

The authentication context is included with the SAML assertion authentication statement.

UseEmbeddedCertificate [optional]

The flag specifies whether to use the X.509 certificate embedded in the XML signature when
verifying the signature.

If the embedded certificate is used, no assumptions can be made about the identity of the
sender.

Embedded certificates should not be used in production.

The default is false.

EnableSha1Support [optional]

The flag specifies whether SHA-1 algorithms are supported.

The use of SHA-1 is not recommended.

The default is false.

DisableDestinationCheck [optional]

A SAML message may include a destination URI identifying the address to which the message
has been sent. If included it should match the provider’s URL where the message was received.

For example, for a SAML response the destination should be the local service provider’s
assertion consumer service URL as specified by the AssertionConsumerServiceUrl
configuration property.

Setting the flag to true disables this check.

The default is false.

DisableInboundLogout [optional]

Setting the flag to true disables inbound SAML logout requests.

The default is false.

DisableOutboundLogout [optional]

ComponentSpace SAML for ASP.NET Configuration Guide

23

Setting the flag to true disables outbound SAML logout requests.

The default is false.

DisableInResponseToCheck [optional]

All SAML messages includes a unique ID. SAML responses that are in response to a particular
SAML request include an in-response-to attribute identifying the SAML request.

Setting the flag to true disables checking to ensure the in-response-to attribute is present and
correct.

The default is false.

DisablePendingLogoutCheck [optional]

If a SAML logout response is received without having previously sent a logout request, this is
considered an error.

Setting the flag to true disables this check.

The default is false.

DisableLogoutResponseStatusCheck [optional]

If a SAML logout response is received with an error status, this is considered an error.

Setting the flag to true disables this check.

The default is false.

DisableClearAllSessionsOnLogout [optional]

On SAML logout, all sessions to the partner provider for the user are cleared as most partner
providers don’t support separate logout of multiple SSO sessions in the one browser session.

Setting the flag to true disables this and sessions are be logged out individually.

The default is false.

PartnerCertificates [optional]

Zero or more Certificate configuration entries identifying partner X.509 certificates that are
issued to the partner provider and used by the local provider. Partner certificates do not include
private keys. Typically, only a single certificate is specified. If more than one certificate is
specified and a security operation using the certificates fails, the operation is retried using the
next certificate in the list until either successful or all certificates have been tried.

As an example, if the SAML assertion received by the local service provider is signed each
partner certificate is used in an attempt to verify the signature.

Multiple partner certificates support scenarios including the phased rollover of expired
certificates.

ProviderConfiguration
The ProviderConfiguration specifies properties common to all local and partner providers.

ComponentSpace SAML for ASP.NET Configuration Guide

24

Name [required]

All local and partner providers must have a unique name. Partner providers will supply their
names. Local names should be universally unique and, for maximum interoperability, be in the
form of a URL. The URL doesn’t have to locate a resource but it’s common for it to point to the
home page of the web application or the download link to the local provider’s SAML metadata.

The name corresponds to the entity ID, if SAML metadata is used.

Description [optional]

The description is purely for documentation and is not part of SAML SSO.

LocalCertificates [optional]

Zero or more Certificate configuration entries identifying local X.509 certificates that are issued
to and used by the local provider. Local certificates must include private keys. Typically, only a
single certificate is specified. If more than one certificate is specified and a security operation
using the certificates fails, the operation is retried using the next certificate in the list until either
successful or all certificates have been tried.

As an example, if the SAML assertion received by the local service provider is encrypted each
local certificate is used in an attempt to decrypt the SAML assertion.

Multiple local certificates support scenarios including the staggered rollover of expired
certificates.

CertificateConfiguration
The CertificateConfiguration identifies an X.509 certificate stored as a string, in a file, in the
Windows certificate store, or elsewhere in the configuration.

If the certificate is stored as a string, the certificate base-64 encoded string must be specified
and, if the certificate includes a private key, the password.

If the certificate is stored in a file, the file name must be specified and, if the file includes a
private key, the password.

If the certificate is stored in the Windows certificate store, the store name and location must be
specified as well as the certificate's serial number, thumbprint or subject name.

If the certificate is stored elsewhere in the configuration, the configuration key must be
specified. This may be used to retrieve certificates stored in an Azure key vault

Use [optional]
Specifies the certificate’s use. It can be:

• Encryption
• Signature
• Any

The default is Any.

String [optional]
The string is the base-64 encoded X.509 certificate.

ComponentSpace SAML for ASP.NET Configuration Guide

25

Key [optional]
The key identifies the base-64 encoded X.509 certificate stored in the app settings. For
certificates in an Azure key vault, the certificate is specified by its configuration key.

FileName [optional]
The file name is the relative or absolute path to the X.509 certificate file.

Password [optional]
The password protects the private key.

PasswordKey [optional]
The password key identifies the certificate password stored in the web configuration
(web.config). The password protects the private key.

For example, if the PasswordKey attribute value is “CertificatePassword”, then under the
web.config’s appSettings section, an entry with the key name CertificatePassword is expected
and the entry value is used as the password.

<appSettings>
 <add key="CertificatePassword" value="certificate-password-goes-here"/>
</appSettings>

By default, the key is expected to be in the appSettings section. A different section may be
specified by using the syntax sectionName/keyName.

For example, if the PasswordKey attribute value is “secureAppSettings/CertificatePassword”,
then under the web.config’s secureAppSettings section, an entry with the key name
CertificatePassword is expected and the entry value is used as the password.

<configSections>
 <section name="secureAppSettings"
type="System.Configuration.NameValueSectionHandler" />
</configSections>

<secureAppSettings>
 <add key="CertificatePassword" value="certificate-password-goes-here"/>
</secureAppSettings>

By encrypting the applicable section in web.config using Microsoft’s aspnet_regiis utility, the
certificate file password is secured.

StoreLocation [optional]
For certificates in a Windows certificate store, the store location specifies the location.

The store location may be:

• CurrentUser
• LocalMachine

The default is the local machine.

ComponentSpace SAML for ASP.NET Configuration Guide

26

StoreName [optional]
For certificates in a Windows certificate store, the store name specifies the store.

The store name may be one of the standard stores:

• AddressBook
• AuthRoot
• CertificateAuthority
• Disallowed
• My
• Root
• TrustedPeople
• TrustedPublisher

Alternatively, it may be any other store including:

• WebHosting

The default is the My (i.e. personal) store.

SerialNumber [optional]
For certificates in a Windows certificate store, the certificate is specified by its serial number.

Thumbprint [optional]
For certificates in a Windows certificate store, the certificate is specified by its thumb print.

SubjectName [optional]
For certificates in a Windows certificate store, the certificate is specified by its subject name.

URL
Local and partner provider URLs may be absolute or relative.

URLs are relative to the host name and port number of the current HTTP request.

For example, an assertion consumer service URL may be specified absolutely.

https://localhost:44360/SAML/AssertionConsumerService

Alternatively, it may be specified as a path.

~/SAML/AssertionConsumerService

This is converted to an absolute URL using the base URL of the current HTTP request.

Although the more common use case it to specify relative local URLs, relative partner URLs may
be specified if, for example, the local and partner provider are installed on the same server.

Creating SAML Configuration
The CreateConfiguration console application project may be used to generate SAML
configuration.

It may be used to generate SAML configuration for the local identity provider or service provider.

CreateConfiguration may be run as follows.

ComponentSpace SAML for ASP.NET Configuration Guide

27

CreateConfiguration.exe

It will prompt for various input required to generate the SAML configuration.

The prompts will vary depending on whether identity provider or service provider configuration
is to be generated.

Creating Local Identity Provider Configuration
Create Identity Provider or Service Provider configuration (IdP | SP):

Specify identity provider (IdP) configuration is to be generated.

Name:

Specify a name that uniquely identifies the local identity provider.

For maximum compatibility, a URL is recommended.

For example, it could be the URL of the web site or application although it doesn’t necessarily
have to point to a web resource.

Single Sign-On Service URL [None]:

Specify the single sign-on service URL.

This is the identity provider endpoint that will receive SAML authn requests.

If SP-initiated SSO will not be supported, this input is not required.

Single Logout Service URL [None]:

Specify the single logout service URL.

This is the identity provider endpoint that will receive SAML logout messages.

If SAML logout will not be supported, this input is not required.

X.509 signature certificate PFX file [None]:

Specify the path to the X.509 certificate file (i.e. PFX file) whose private key will be used for
generating signatures.

The identity provider should sign either the SAML response or assertion and so a signature
certificate PFX normally is required.

X.509 certificate PFX password [None]:

Specify the password that protects the PFX file.

SAML configuration file [saml.config]:

Specify the file where the generated SAML configuration will be saved.

Creating Local Service Provider Configuration
Create Identity Provider or Service Provider configuration (IdP | SP):

Specify service provider (SP) configuration is to be generated.

ComponentSpace SAML for ASP.NET Configuration Guide

28

Name:

Specify a name that uniquely identifies the local service provider.

For maximum compatibility, a URL is recommended.

For example, it could be the URL of the web site or application although it doesn’t necessarily
have to point to a web resource.

Assertion Consumer Service URL [None]:

Specify the assertion consumer service URL.

This is the service provider endpoint that will receive SAML responses.

Normally this input should be specified.

Single Logout Service URL [None]:

Specify the single logout service URL.

This is the service provider endpoint that will receive SAML logout messages.

If SAML logout will not be supported, this input is not required.

X.509 signature certificate PFX file [None]:

Specify the path to the X.509 certificate file (i.e. PFX file) whose private key will be used for
generating signatures.

If SAML messages will be signed a signature certificate PFX is required.

X.509 certificate PFX password [None]:

Specify the password that protects the PFX file.

SAML configuration file [saml.config]:

Specify the file where the generated SAML configuration will be saved.

SAML Metadata
SAML configuration is different from SAML metadata.

SAML metadata is defined by the SAML v2.0 specification as a standard format for exchanging
configuration information between SAML providers.

SAML configuration includes enough information to implement SAML SSO at the local provider.

The SAML for ASP.NET Metadata Guide describes how to generate, import and export
metadata.

